

Materials, Medicine & Manufacturing: Materials Awareness and Selection

Dr. Crystal G. Morrison

Principal Investigator and Senior Materials Scientist

Dr. Crystal G. Morrison

- Ph.D. University of Michigan
- Postdoc Agnew National Security Fellow at Los Alamos National Laboratory (LANL)
- Lead Polymer SME for LANL Nuclear
 Weapons Program

Los Alamos

EST. 1943

Dr. Crystal G. Morrison

- Technical Lead for Polymeric Materials

Additive, Military and Medicine?

- Additive Manufacturing Direction
 - Rapid prototyping ...
 - Novel designs...

BUT,

 Increasing interest and focus on using AM for high value, high performance, critical parts and assemblies

Materials Emphasis

- AM Trend:
 - High Value and Performance
- AM Focus:
 - Materials \rightarrow Processes \rightarrow Product V&V
- Materials understanding across the lifecycle of the product

Awareness of Considerations Unique to the AM Community

Possibilities and Questions

I've made a zillion rapid prototypes with this material. I can move forward with production, right?

ABS, ABS "like", medical grade, food grade... it's all the same. Or is it?

I have years of data on this device design made with X plastic using injection molding. I'm going to use X plastic with an AM method. Do I really need testing?

I buy my powered raw materials from X, who gets them from Y, who is a distributor for Z. I think it's good stuff. Right?

Response

Don't assume or underestimate!

Q: Where do I start when selecting polymeric materials for an AM-produced device? A: Use systematic materials assessment with focus on Requirements, Materials Screening, and Manufacturability

Moving forward...

- Polymers and Plastics in Medical Devices
 - Emerging Considerations
- Selection Process Overview
- Considerations for Additive Manufacturing
 - Requirements
 - Material Screening
 - Manufacturability
 - Ranking
- Summary

Emerging Considerations

Selection Process Overview

Requirements

<u>Material</u> <u>Screening</u> -Biocompatibility -Sterilization -Physical Properties

Manufacturability -Injection Molding -FDM

Ranking

<u>Material</u> <u>Screening</u> -Biocompatibility -Sterilization -Physical Properties

Manufacturability -Injection Molding -FDM

<u>Material</u> <u>Screening</u> -Biocompatibility -Sterilization -Physical Properties

Manufacturability -Injection Molding -FDM

Ranking

- Biocompatibility
 - USP Class VI
 - ISO 10993
 - Nature of physical contact vs biological risks
 - Cytotoxicity, Sensitization, Irritation

Limited selection of materials for AM now... but not for long.

- Select VisiJet® clear materials
- Dreve Fototec hearing aid material
- DuraForm® PA and PRO

- Somos® materials
 - Watershed XC11122
 - ProtoGen 18420
 - BioClear

• Select e-Shell materials

• PA 2200

Fortus®

- PC-ISO
- ABS-M30i

Objet

• MED610

List compiled by Sam Anson for Medical Plastics News.

- The first FDA approval for an additively manufactured polymer implant was Oxford Performance Material's OsteoFab[®] cranial device made from PEKK
- FDA 510(k) clearance for its 3D printed OsteoFab® Patient-Specific Facial Device (OPSFD).

Images used with permission by OPM

Sterilization

- Radiation (gamma/e-beam)
- Chemical (EtO)
- Autoclave (steam)

- Chemical Resistance
 - Isopropyl Alcohol
 - Bleach
 - Peroxides

- Conventional vs. Additive "
- Ultem® amorphous thermoplastic polyetherimide (PEI) resin family from SABIC

Research from Fischer and Josupeit at Direct Manufacturing Research Center (DMRC) in Paderborn Germany

- Wear Resistance
 - Mechanical properties can be different
 - Surface properties and wear debris
 - Other factors
 - Pairs (combination of materials in contact)
 - Conditions (wet or dry)
 - Configurations (rotating, sliding, oscillating)

- Thermal Properties
 - Filler
 - Orientation
 - Crystallinity
 - Conventional vs. Additive

<u>Material</u> <u>Screening</u> -Biocompatibility -Sterilization -Physical Properties

Manufacturability -Injection Molding -FDM

Ranking

Manufacturability

AM Material Options

Testing

Process Improvement

Troubleshooting

Impact – Manufacturer Liability

- Biomaterials Access Assurance Act (BAAA) of 1998
- Responsibility and liability for the device performance
- High quality materials and testing

Summary/Conclusion

- Landscape is exciting... and overwhelming
- Awareness of materials considerations
- Systematic assessment
- Requirements, Materials Screening, Manufacturability
 - Simultaneous, Evolving Dialogue
- Impact

Questions?

Crystal G. Morrison, Ph.D.

Principal Investigator & Senior Materials Scientist

724.325.1776 Office 724.387.1897 Direct 724.710.0974 Mobile

"Creating Vision Across the Polymer Lifecycle" published September 11th, 2013

X and Y

Research from Fischer and Josupeit at Direct Manufacturing Research Center (DMRC) in Paderborn Germany