Materials, Medicine & Manufacturing: Materials Awareness and Selection

Dr. Crystal G. Morrison
Principal Investigator and Senior Materials Scientist
Dr. Crystal G. Morrison

- Ph.D. – University of Michigan
- Postdoc – Agnew National Security Fellow at Los Alamos National Laboratory (LANL)
- Lead Polymer SME for LANL Nuclear Weapons Program
Dr. Crystal G. Morrison

- Technical Lead for Polymeric Materials
Additive, Military and Medicine?

• Additive Manufacturing Direction
 – Rapid prototyping …
 – Novel designs…
BUT,
 – Increasing interest and focus on using AM for high value, high performance, critical parts and assemblies
Materials Emphasis

• AM Trend:
 – High Value and Performance

• AM Focus:
 – Materials → Processes → Product V&V

• Materials understanding across the lifecycle of the product

 Awareness of Considerations Unique to the AM Community
Possibilities and Questions

I’ve made a zillion rapid prototypes with this material. I can move forward with production, right?

ABS, ABS “like”, medical grade, food grade… it’s all the same. Or is it?

I have years of data on this device design made with X plastic using injection molding. I’m going to use X plastic with an AM method. Do I really need testing?

I buy my powered raw materials from X, who gets them from Y, who is a distributor for Z. I think it’s good stuff. Right?
Response

Don’t assume or underestimate!

Q: Where do I start when selecting polymeric materials for an AM-produced device?

A: Use systematic materials assessment with focus on Requirements, Materials Screening, and Manufacturability.
Moving forward…

- Polymers and Plastics in Medical Devices
 - Emerging Considerations
- Selection Process Overview
- Considerations for Additive Manufacturing
 - Requirements
 - Material Screening
 - Manufacturability
 - Ranking
- Summary
Emerging Considerations

- Materials
- Manufacturing
- Medicine
Selection Process Overview

Requirements
- Biocompatibility
- Sterilization
- Physical Properties

Material Screening

Manufacturability
- Injection Molding
- FDM

Ranking
Requirements

Material Screening
- Biocompatibility
- Sterilization
- Physical Properties

Manufacturability
- Injection Molding
- FDM

Ranking
Requirements

- FDA device classification?
- Is the material biocompatible?
- What load will be applied? How long?
- What testing has been done?
Requirements

- Biocompatibility
- Sterilization
- Physical Properties

Material Screening

Manufacturability
- Injection Molding
- FDM

Ranking
Materials Screening

• Biocompatibility
 – USP Class VI
 – ISO 10993
 • Nature of physical contact vs biological risks
 • Cytotoxicity, Sensitization, Irritation

Limited selection of materials for AM now… but not for long.
Materials Screening

- Select VisiJet® clear materials
- Accura® ClearVue and Y-C 9300R
- Dreve Fototec hearing aid material
- DuraForm® PA and PRO

- Somos® materials
 - Watershed XC11122
 - ProtoGen 18420
 - BioClear

- Select e-Shell materials

- PA 2200

- Fortus®
 - PC-ISO
 - ABS-M30i

- MED610

- OXPEKK®

List compiled by Sam Anson for Medical Plastics News.
Materials Screening

- The first FDA approval for an additively manufactured polymer implant was Oxford Performance Material’s OsteoFab® cranial device made from PEKK.
- FDA 510(k) clearance for its 3D printed OsteoFab® Patient-Specific Facial Device (OPSFD).

Images used with permission by OPM
Materials Screening

• Sterilization
 – Radiation (gamma/e-beam)
 – Chemical (EtO)
 – Autoclave (steam)

• Chemical Resistance
 – Isopropyl Alcohol
 – Bleach
 – Peroxides
Materials Screening

• Mechanical Properties
 – Conventional vs. Additive
 – Ultem® amorphous thermoplastic polyetherimide (PEI) resin family from SABIC

Research from Fischer and Josupeit at Direct Manufacturing Research Center (DMRC) in Paderborn Germany
Materials Screening

Tensile strength is much greater in X direction rather than Z build direction.

Research from Fischer and Josupeit at Direct Manufacturing Research Center (DMRC) in Paderborn Germany
Materials Screening

• **Wear Resistance**
 – Mechanical properties can be different
 – Surface properties and wear debris
 – Other factors
 • Pairs (combination of materials in contact)
 • Conditions (wet or dry)
 • Configurations (rotating, sliding, oscillating)
Materials Screening

• Thermal Properties
 – Filler
 – Orientation
 – Crystallinity
 – Conventional vs. Additive
Requirements
- Biocompatibility
- Sterilization
- Physical Properties

Material Screening
- Biocompatibility
- Sterilization
- Physical Properties

Manufacturability
- Injection Molding
- FDM

Ranking
Manufacturability

AM Material Options

AM Method ↔ AM Equipment
Impact

Schedule Testing Success

Design Process Improvement Troubleshooting
Impact – Manufacturer Liability

- Biomaterials Access Assurance Act (BAAA) of 1998
- Responsibility and liability for the device performance
- High quality materials and testing
Summary/Conclusion

- Landscape is exciting… and overwhelming
- Awareness of materials considerations
- Systematic assessment
- Requirements, Materials Screening, Manufacturability
 - Simultaneous, Evolving Dialogue
- Impact
Questions?
Crystal G. Morrison, Ph.D.
Principal Investigator & Senior Materials Scientist

724.325.1776 Office
724.387.1897 Direct
724.710.0974 Mobile

“Creating Vision Across the Polymer Lifecycle” published September 11th, 2013
Materials Screening

Research from Fischer and Josupeit at Direct Manufacturing Research Center (DMRC) in Paderborn Germany